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ABSTRACT

Several types of gray-weighted "medial axes" have been ;

defined.

This paper shows that one of them, the min-max medial
axis, can be used to reconstruct good approximations to the
original image based on a relatively small amount of information.
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1. Introduction

- A binary image can be exactly reconst :cted if we know the ;

centers and radii of its maximal blocks of 1's, since the set ﬁ {
of 1's is the union of these maximal blocks. This representa-

tion is called the medial axis transformation (MAT) [1l], since

the centers of maximal blocks should lie near the midlines of

regions of 1's.

ailabisitoy

Several generalizations of the MAT to grayscale images have

been proposed. The binary medial axis (=set of centers of

3 maximal blocks, MA) turns out to be the set of 1l's whose distances
k (=shortest path lengths) to the set of 0's are local maxima [2].

Let us define the gray-weighted distance between two points as

the smallest sum of gray levels along any path joining the

points; then we can define the gray-weighted medial axis (GRAYMAT)
{3] as the set of points whose gray~-weighted distances to the

set of 0's are local maxima. This definition is not entirely
satisfactory, since it gives the set of 0's special status, thus
in effect requiring a segmentation of the image; and it is also

hard to see how to reconstruct an image from its GRAYMAT.

Another generalization, the SPAN (Spatial Piecewise Approxi-

mation by Neighborhoods) [4]), finds the largest block, centered

and discards blocks if they are contained in other such blocks,

thus obtaining a set of maximal blocks. If we know the centers,

radii, and mean gray levels of these SPAN klocks, we can

T

E at each image point, that satisfies some criterion of homogeneity,
|
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reconstruct a good approximation to the image by superimposing
blocks having these gray levels. A disadvantage of this approach
is the computational cost of determining the maximal blocks.

A recently proposed generalization, the GRADMAT [5], assigns
a score to each image point based on the strengths of the gra-
dient magnitudes (in opposite senses) at pairs of points symme-
trically located with respect to the given point. Unfortunately,
the GRADMAT turns out to be quite sensitive to noise. 1In Section
4 we will see that, in consequence, approximations to the image
reconstructed from the GRADMAT are rather poor.

A final generalization is based on a characterization of the
binary MAT in terms of shrinking and expanding operations (6].
Let S be the set of 1's, let S(k) be the result of repeatedly
(k times) "expanding" S by changing all 0's that are adjacent

(=k)

to 1's into 1's, and similarly let S be the result of k steps

of "shrinking" S by changing all 1's that are adjacent to 0's into

0's. It can be shown that (s(7k)y (1) S(-k+l), and that the
difference between these two sets is just the set of MA block
centers that have radius k. We can generalize this definition
to grayscale images [7] by using local min and max operations
as analogs of shrinking and expanding [8]. Let I(k) be the re-
sult of k iterations of local max applied to the image I, and

(=k) similarly be the result of k local mins. It can be

(=k)) (1) o 1 (-k+1)

let 1

shown that (I s . At each image point, we can

define a vector A = (Al,...,Am) whose kth component is the value
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of TR _ (1K) (1) 4 that point; the array of these vectors
constitutes the MMMAT (min-max MAT) of I. Typically, at most
points of the image all the components of the MMMAT will have
low values, and at most of the exceptional points the values
will be high only for a few consecutive values of k, correspond-
ing to the natural "MMMAT radius" at the given point.

The original image I = I(O) can be reconstructed from I(_m)
and the MMMAT using a process of iterative local max and addition

(’k""l) = (I("k)) (1)+A

of A values; in fact, I However, this

K
exact reconstruction process requires a large amount of infor-
mation, including the entire array of MMMAT vectors A. 1In

Section 2 we will see how good approximations to the image can

be constructed using only a few high MMMAT values at a relatively

small number of points.
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2. MMMAT skeletons

As was seen in {7], summing the components of the MMMAT
vector A at each point produces a picture P in which the high
value points constitute very reasonable skeletons of the original
grayscale image I. Since the reconstruction of I involves taking
local maxima and adding A values, the contribution from points
having low values in P will be relatively insignificant. Hence
instead of using the entire MMMAT, we can use the A vectors
only at points where the vector component sum is higher than
some threshold. All the other points are treated as if they
have zero A vectors. Table 1 shows the number of skeleton points
in four 64 by 64 images (see Figure 2) when the threshold is set
at M/2, M/4 and M/8 where M is the highest value in P, i.e.,
the highest MMMAT vector sum, for each image. The amount of
information wused is greatly reduced and the reconstructed image
should be a good approximation to the original.

It was also seen in [7] that taking the largest component
of the vector A at each point also produces good skeletons.

This is because, at most points, only a few components of the

A vector have high values. Thus at each skeleton point we can
use only one or a few highest A values and still obtain a good
reconstructed image.

Thresholding P may produce skeletons that are thick (too
many points) or disconnected (too few points). A possible
alternative is to apply thinning or line detection operations

to P, since the skeleton points should form a set of arcs or

curves.
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Thinning operations on binary pictures, which repeatedly
delete black border points without locally disconnecting their
neighborhoods, reduce objects to arcs and curves. This concept
has been generalized to grayscale images [9], where each point's
gray level is changed to the minimum of its neighbors' gray
levels provided this does not locally "disconnect" its neigh-
borhood, where we say that two points are "connected" if there
exists a path between them composed of points that are as dark
as both of the endpoints.

A simple nonlinear vertical line detection operator assigns
to point (i,3) the value h_(i,j) = £ [P (i,3+k) = F(B(i-1,3+k)+
P(i+l,j+k))] provided the following ;;x conditions are satisfied:

P(i,j+k) > P(i-1l,j+k), P(i,j+k) > P(i+l,j+k) for k = -1,0,1.
Operators that detect lines in other directions can be defined
analogously [10]. A slightly less strict line detection operator
is defined by requiring that five of the six conditions be satis-
fied. Applying such operators to a skeleton should preserve
only the points at local maxima of the cross-sections of the
skeleton (i.e., the crests of skeleton "ridges"), thus yielding
a thinned skeleton. However, since a point and its neighbors
can respond to line detectors in different directions, apolying
the operators only once to the MMMAT sum can yield lines that

are still thick and still contain noise points. If we use an

iterative process in which the operator is applied (repeatedly)




to the output of the previous iteration, it should yield skele-

tons that are quite thin and curve-like.

The thinned skeletons obtained by thinning P or applying
line detectors to P can be used for reconstruction. Table 2
shows the numbers of points in the skeletons obtained using these
methods. Figure 1 shows the skeletons of the chromosome image
(see Figure 2) using the thresholding, thinning, and line detect-
ing techniques. The six-condition line detector was iterated
twice and the five-condition line detector was iterated three
times. The line detection results yield skeletons that are

guite thin and curve-like.
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3. Reconstruction from the MMMAT

Four images were used in the experiment. The MMMAT's were
obtained using eight-neighbor local min and local max operations.
Figure 2 shows the original images and the reconstructed images
using the points whose MMMAT vector sums _? Ai are greater than
M/4 where M is the maximum MMMAT sum in tﬁglimage. As we can
see from Table 1, the numbers of points used are quite small,
but the results are wvery good.

In the tank image, the background near the top image border
has a few dark areas. Thus the MMMAT sums at a few of the points
there have values between M/2 and M/4. 1In the reconstructed 1
image where M/4 was used as a threshold to select skeleton points, ‘
the nonhomogeneity of the background is exaggerated (see Figures
2,3). 1If the threshold is set at M/2 then these background blocks
disappear (see Figure 4).

Figure 3 shows reconstructions using the same skeleton
points as in Figure 2, but using only a few (1, 2, or 3) highest
A values at each point. Using three A values is almost the same
as using the entire A vector. Good approximations to the images
can be obtained using only a single A value at each of these
points.

Figure 4 shows that the points with MMMAT sums > M/2 are not

sufficient to reconstruct a good approximation to the original

image. The M/4 skeleton with one A value gives better approxi-

mations than the M/2 skeleton with five A values. The M/8
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skeletons have 60% to 100% more points than the M/4 skeletons,
but the reconstructed images are at best slightly improved.
Figures 5, 6, and 7 are reconstructions using the skeleton
points obtained from thinning and line detection. These skele-
tons are more curve-like, but thresholding with M/4 seems to give

better approximations to the original images.

To see how noise in the images affects reconstruction from
the MMMAT, we added noise (mean = 0, standard deviation = 5) to
the chromosome picture, and then performed the reconstruction
process. The original and the reconstructed images using dif-
ferent skeleton point selection methods are shown in Figure 8.
Thresholding with M/4 works better than thinning and line detec~
tion even though it uses fewer points. Thresholding with M/4
and using three A values at each selected point reconstructs a
reasonable approximation to the chromosome picture with most of
the noise removed.

Figure 9 shows the skeletons of the image obtained by
applying thresholding, thinning and line detection to the MMMAT
sum picture. As can be seen from Figure 9(a), there are too
few points with MMMAT sum (ZAi) > M/2, where M is the highest
MMMAT vector sum for the image; and there are many isolated
points with M/2 2 ZAi > M/4 (compare Figures la and 9a). The
skeletons obtained from thinning and line detection contain

curve segments that are not in the “cénters" of the objects;

rather, they arise from points whose ZAi values are quite low,

S
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i.e. = M/4 (see the points labelled "8" in Figure 9a). If we

- ’ modify our skeleton point selection procedure by applying the

line detector or the thinning operator to the MMMAT sum picture

semithresholded at M/4 (i.e., points with values s M/4 are set
to zero), we obtain gquite reasonable skeletons such that most

of the isolated points with ZAi > M/4 are no longer part of the
skeleton; see Figure 10. This is particularly noticeable in the
line detection case. The numbers of points in these skeletons
are only 42 and 177 (see Table 3). Figure 1l shows that recon-
structions from these small numbers of points give fair approxi-
mations to the original chromosome image, with much of the noise

removed.
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4. Reconstruction from the GRADMAT

The GRADMAT skeleton is quite sensitive to the presence of
noise edges or irregularities in the region edges. In this
section we discuss possible ways to reconstruct an image from
the high score points of its GRADMAT,.

Each image point p's GRADMAT value 1s a score based on the
gradient magnitudes at pairs of points that have p as their mid-
point. If each point p stores the coordinates and gradient mag-
nitudes of all the pairs of points q making contributions to its
score, then one way to reconstruct an approximation to the image
is to "color" all the points between each pair of gq's with the
corresponding gradient magnitude. In case a point receives more
than one gradient value, the maximum is used. However, the amount
of information needed at each point in order to do this is too
large.

Alternatively, instead of trying to use all pairs of contri-
buting points, we can choose a radius r which provides the strong-
aest response and color all the points in the disk of radius r
with the score of p. However, this would certainly produce ob-
jects that are too big, as too many points are colored in. A
modification is to color only a rectangular strip having p at its
center and length 2r where its width and orientation are deter-
mined by the responses from the points on the circle C of radius
r centered at p, i.e., all the points at distance r from p, as

follows: Divide C into sixteen equal length arcs. For each
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pair of opposite arcs, calculate the total score contribution
from the points on them. Let X be the sector angle corresponding
to the longest consecutive sequence of arcs with nonzero contri-
butions. The major axis of the rectangle is located in the
direction of X/2. Various widths have been tried in the recon-
struction. Fiqure 12(b) shows the reconstruction using width

2r sin(X/4). The objects are somewhat too big, and have irre-
gular boundaries. Figure 12 (c) shows the reconstruction using
width 2r sin(X/8); the objects are smaller, but even more irre-
gular. PFigure 12(d) is the reconstructed image using rectangles
of length r and width 1, i.e., a line joining the two opposite
edge points on C which give the maximal contribution to the
score of p. The objects are now too small and quite ragged.

Thus we see that reconstruction from the GRADMAT produces objects
whose general shapes are good approximations of the original

objects, but the results are not as good as those using the

MMMAT.
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- 5. Concluding remarks

Using a small amount of information, namely, a set of points
having high MMMAT values and a few components that make strong
contributions to these values, good approximations to grayscale

images can be reconstructed. Hence these points with their

appropriate A values form a compact representation of the image.

e

Both the MMMAT skeleton and the reconstruction computation are

relatively inexpensive and computable in parallel. The exanples i

show that they give better approximations than reconstructions

' from the SPAN [4] or GRADMAT.
E The MAT is not just a compact representation of a binary k
3 image; it also provides importan£ structural and shape informa- | . |
: tion. The MAT points tend to lie on a set of arcs corresponding

to "lobes" of the set S, and the way the radius varies along ﬁ

such an arc provides information about its shape (width, taper,
etc.). Analogously, it should be possible to extract certain
types of "shape" information from an unsegmented gray level image

‘T by inspecting its generalized MAT.
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M/2 M/4 M/8
Chromosomes 74 189 322
Terrain 244 582 1268 |
Tank 30 227 552 :
Blood Cell 74 462 721

- Table 1. Number of skeleton points in four 64x64 images (see
= Figure 2) using various thresholds (M = highest MMMAT
' sum in image).

Line detection

Thinning Six conditions Five conditions
Chromosomes 166 127 208
Terrain 486 324 557
Tank 276 196 264
Blood Cell 277 321 457

Table 2. Number of skeleton points in the four images after
thinning or line detection.

] Thresholding at M/4 257
‘; Thinning 275
" Line detection 300

Thinning after semithresholding at M/4¢ 177
Line detection after semithresholding at M/4 42

Table 3. Numbers of skeleton points obtained from the chromo-
some image of Figure 7a using various selection
techniques. ’




Figure 1. sSkeletons of chromosome image (see Figure 2)
obtained using various techniques.

(a) Thresholding. 2 indicates points with value > M/2
4 indicates points with M/2 2 value > M/4
8 indicates points with M/4 2 valie > M/8

{(b) Thinning. e
{(c) Line detection (6 conditions). 1
(d) Line detection (5 conditions).
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Figure 1b.
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Figure 14.
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(1)

(14)

(i:14)

(iv)

(a) (k)
Figure 2. Reconstruction from the MMMAT 1Sing points whose MMMAT

vector sums are greater than M/4. (a) Original images;
(b) reconstructed images: (1) chromosomes; (ii) terrain;

1

(1ii) tank; (iv) blood cell.

(a) (b) \c) (d)

Figure 3. Same as Figure 2 except

Column f‘a): Original image

Column ( ) : Reconstruction using the maximum A value
at each point anaving sum > M/4

Column (c): Reconstruction using the two largest A
values at each such point

Column {(d): Reconstruction using the three largest A
values at each such point
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(a) (b) (c) (d)

Figure 4.
(a) Reconstructed images using the largest A value at points
whose MMMAT vector sums are greater than M/2.

(b) Same as (a) except that the three largest A values at
each point are used
(c) Same as (a) except that the five largest A values at

each point are used
(d) Ssame as (a) except that all points with MMMAT vector
sums greater than M/8 are used.

(a) (b)

Figure 5. Reconstruction using points obtained by thinning the
MMMAT sums.
(a) The largest A values are used
(b) The three largest A values are used
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Figure 6. Same as Figure 5 except that points satisfying a
nonlinear line detector (six conditions) are used.

(a) (b)

Figure 7. Same as Figure 5 except that points satisfying a less
strict nonlinear line detector (five conditions)
are used.
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a
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d
g9
Figure 8. Reconstruction of a noisy chromosome image
(a) Chromosomes of Figure 2(a) with noise added (mean = 0,
standard deviation = 5 on a grayscale of 0-63)
(b) Reconstruction of (i) using points with MMMAT sum > M/4
and the largest A value at each of these points

(c) Same as (b) escept that the three largest A values are used
(d), (e) same as (b), (c) except that points cbtained from
the nonlinear line detector are used
(f), (g) Same as (b), (c) except that points obtained from
thinning are used.




Figure 9. Skeletons of the noisy chromosome image (Figure 7a)
using various techniques.

(a) Thresholding. 2 indicates points with value > M/2
4 indicates points with M/2 2 value > M/4
8 indicates points with M/4 2 value > M/8
(b) Thinning.
(c) Nonlinear line detection.

Figure 10. Skeletons of the noisy chromosome image obtained
by applying
(a) Thinning operator
(b) Nonlinear line detector
to the MMMAT sum picture semithresholded at M/4.

ki

FPOR-Po




.8.3422222449.:e.e.a:.::.s ..... e...an..e...:....e ...... B..8. ...

.868.8.8..8....8...... 84...88..... 8...... 8....8..... 8....8..

.8...8..8.8.,...... 88888448. .. ..... 8. ...... 48844.88. . . ... 88......
.8...... 868.8.8.8....8.4448. . ........... 8..882424. .88..8...... 8.
B - 8...... 88444444. ... .. 8.8..8.8. B 48228888 .8.8..8.

.88..848...04..... 88. ..8..... 48.......... 4. . 4444448. . 88. 8s8. ..

.8...... 88..868.8..... 8...8..... 8.8...4.8 .488....... 8. ...... 84

.88..... 8.8...8...888.8.4..8...... 8...888..8..4.8.88..... 4.8...8
..... 8............8...84..88......8..8.....8.....8....8.4,..088.8
R = 868.68.8..8...8.8.68.8. 8. .8...8..4....8.84..8.8..88.8.
..88...8...48......... 88...8.. 88..88..888..88...8 ............ gses8
..B88..8...8...8...8....68686884.88.8..... 8..... 4..88...... 8.8.8...8
4....88..8.8......... 8..86....8...8.88..8.8...... 88...88. B.. 888.
...... g8....8.8.........8.....8.........8...8..8.......8...8....

8..88..4..8.4..8...... 8..8.8..... ..8...8...... es...... 8....... 8.

. 'po4...®. ...8888...88.8....848.....868...8. .88 ... . 88, . . 88844
..... 8.8...80..8.8...8...8....48.8...80....68.......8.8. 4. ..08844
8. .44...08..8.8....88.8.8....8...... 8.... .. 8 ..8 ...8....... 844

49 8 B..B....B.B ..... 8 ...... 8.888..... 8..... 88..88..8..... 8

g848888. ...... 8. .... 8....8....8.... 8...8...44.48 ......... 8....88.
.244. ..8..... 8...8.8...8.888..... 8. . 8. 44442488. . . 88. 488. B B.
82448. . ... 8. 88 88 BB .8..8.......... 44442884. . . 888. 84. 8 8. 48 4
.288...... 848888...88....... 8.8..8.8..884448. ........... 8..... 8.
4888 8888. 8..9...824.8...8....88 ....... 44, . . 8. ..... '8....88..48
848..... 888 88...88.444........... a8..... 84q......... g8. ..8.8..

' e... .ess.8. ..08.......8...8..8. ... 8. . u. .88 89 .8. 4 888,
4.8 4484...8..... 8. 8. 6. 666, . 888, 488, 486. 8. .. . 5. .68.88. .. 4. 4. . . 68
844446, ......88..88......6.8.8.8....8..............0088444.8. ..

e b e e AT o i AR A B+ 7

" ainilithibon







- AP 2y

" ‘'Figure 9c¢




Bt fia 4 ok s s mert T e e M i e R e
i At : <
e e e e St e At e e e s e % v

...............................................................

- Bk e e



sre o e Ta - TR . v

ks . e

3 . X . . .. ... i ] 7
‘ X X ;
k. [

.
.
.
.
.
.
.
.
.
.
.
.
.

X X X X

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

ke

X ’

R

@ = & 8 8 4§ 8 & s 8 & . 3 B 3 ® ¥ e 4 r e & s % ®B * g = 4 B e+ T 2 P g B & P 3 % & 2 2 P " & s E®E " a s o s oo [}
1

. ;

AT Al TR




Ll

a b
c d
Figure 11. Reconstruction of the noisy chromosome image of

Figure 8 (a).
(a) Using skeleton points obtained by applying the nonlinear
line detector to the MMMAT sum picture semithresholded at
M/4, and the largest”A'value at each of these points

(b) Same as (a) except that the three largest A values are used
(c), (d) same as (a), (b) except that the thinning operator
is used

Figure 12. Reconstructions from the GRADMAT
(a) Original image
(b) Reconstruction using rectangles
(c) Reconstructicn using rectangles as in (b) but with sector
angle reduced by a factor of 2
(d) Reconstruction using lines
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